
Copyright © Siemens AG 2012. All rights reserved.

Corporate Technology

Developing Linux inside
QEMU/KVM Virtual Machines

Jan Kiszka, Siemens AG, CT T DE IT 1
Corporate Competence Center Embedded Linux

jan.kiszka@siemens.com

Slide 2 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Agenda

 Motivation
 Introduction & basic concepts

 QEMU/KVM as a kernel debugger

 Upcoming features & improvements
 Summary
 [Demonstration]

Slide 3 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

How Do You Do Kernel Development?

Test & debug on the development host
+Handy and fast (modules)
− Invasive (kernel reboots) and risky

Use separate test systems
+Architectural independence, fault containment
−Setup & maintenance efforts, hardware costs

Emulate target system
+Hardware independence, transparency,

reproducibility, costs
−Speed, potential modeling effort

Exploit hardware virtualization
+Emulation + speed
−Architectural support needed

Slide 4 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

QEMU/KVM in a Nutshell

QEMU
 Multi-arch machine emulator
 Tons of device models
 gdb server & monitor
 KVM acceleration

KVM
 Gatekeeper for HW- and

kernel-assisted virtualization
 Fast device models
 PCI pass-through

qemu-kvm fork
 Optimal x86-QEMU/KVM
 Required for pass-through
 To be obsoleted by QEMU

Kernel

Hardware

 QEMU
Process

Guest
A

 QEMU
Process

Guest
B

KVM VFIOvhost ...

CPUs DevicesMemory

Slide 5 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

QEMU/KVM as Test Platform –
Getting Started

Enable KVM (x86)
 modprobe kvm-intel/amd

qemu-kvm package
 Pick at least 0.15.x or 1.0.x

Start from command line
 Hairy but powerful interface
 Can be as simple as
qemu-system-$arch /path/to/image

Use run-qemu.sh wrapper
 lkml.org/lkml/2011/11/5/83
 Beginners guidance, kernel pick-up from build directory

Use libvirt
 Multi-VM management, privilege separation, language bindings
 Command line pass-through for enhance QEMU features

Nubae, licensed under CC BY-3.0

Slide 6 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Virtual Consoles

Benefits
 No wiring, no limits
 Can be faster than

real ports

Multiple frontend options
 Serial port emulation
 virtio
 VGA text console

...and backends
 Local tty
 TCP/Telnet
 Pipe
 File
 …

Slide 7 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Guest Image Management

Disk images
 Check qemu-img for image management
 Use raw format for speed – and loop-back mounting
 Use qcow2 or qed for thin provisioning

Disk pass-through (for the brave ones)
 qemu-system-$arch -snapshot /dev/sda
 Will boot your host (but does not modify it)
 Requires root privileges, forgetting -snapshot is lethal

NFS root
 Classic way in embedded
 Use virtio-net for optimal performance

9pfs
 File system pass-through
 Use for rootfs and/or as shared folder

Slide 8 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Taking and Using Snapshots

Use cases
 Accelerate test startup
 Roll back to consistent state

Disk image snapshots
 qemu-system-$arch disk.img -snapshot
 Create live (snapshot_blkdev) or offline (qemu-img)
 Merge-back live (commit) or offline

Machine snapshots
 loadvm/savevm with qcow2 images
 Migrate to disk (migrate exec:'cat > snapshot.img')
 Upcoming live backup

And with fs pass-through?
 Host-side snapshots (lvm, btrfs, unionizing fs)
 Need to coordinate fs and machine snapshot

Slide 9 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Device Pass-Through

Various buses & devices supported
 PCI (x86-only so far)
 USB (1.1 & 2.0, experimental 3.0)
 Smartcards
 Bluetooth HCI
 SCSI (might be buggy)
 TPM (upcoming)

Beware of host controller emulation flaws!

Scenarios
 Satisfy HW dependencies w/o emulation
 Enable driver development against real HW
 Shorten turn-around times using snapshots +

device hotplug or suspend/resume

Slide 10 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

QEMU as Kernel Debugger –
Basics

Imagine QEMU as JTAG hardware debugger – and more!

Two central interfaces
 Built-in gdb server
 Monitor console
 Both support various transports

gdb server quick-start
 host# qemu-system-$arch -s
 Build kernel with CONFIG_DEBUG_INFO
 host# gdb vmlinux
 (gdb) target remote :1234

Optional: load module symbols
 guest# cat /proc/modules

Look up module base address
 (gdb) add-symbol-file /path/to/module.ko <base address>

Jamie Guinan, licensed under CC BY-SA-3.0

Slide 11 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

QEMU Monitor

Inspect the virtual machine
 info qtree, mtree,
pci, usb, network,
cpus, registers, …

 x, xp (memory access)
 i, o (I/O port access)

Control the VM
 Stop/continue, trigger reset or power button
 Hot plug devices
 Inject NMI, MCE, PCIe error
 Late gdb server activation, ...

Access channels
 Dedicated console (e.g. virtual console – “CTRL-ALT-2”)
 Via gdb session ((gdb) monitor info registers)

Slide 12 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Soft, Hard or Step by Step?
KVM Breakpoint Architecture

Software breakpoints
 Unlimited resource
 Inject trap instruction into guest code
 Intercept traps

 Report host originated traps to gdb
 Reinject guest originated traps

Hardware breakpoints
 Limited by hardware resources
 If in conflict with guest usage, host wins

Single stepping
 Similar to hardware breakpoints
 x86: TF can “leak” to guest stack

Note: No limitations and guest visibility in CPU emulation mode

Slide 13 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Using Watchpoints

Helpful to hunt memory corruptions
 Provided corruptions hits known area
 Provided low rate of valid changes

Beware of hard vs. soft
 (gdb) watch my_global_var
Hardware watchpoint 1: my_global_var
=> Uses limited HW resources
=> Fails if sizeof(my_global_var) > watchpoint capacity

 (gdb) watch *my_local_ptr
Watchpoint 1: *my_local_ptr
=> Will single step, will be removed when leaving scope

 (gdb) watch -l[ocation] *my_local_ptr
Hardware watchpoint 1: -location *my_local_ptr

Slide 14 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Working with SMP

VCPU number limits (x86)
 Soft: 160
 Hard: 254
 Virtual CPUs > physical CPUs:

lock-holder preemptions, slowdowns!

Model for gdb: VCPU = thread
 Switch VCPU via thread command
 Switches memory view as well!
 Do not try to debug user land this way...
 Note: monitor uses different “current VCPU” (see cpu command)

Triggering SMP races
 Play with number of VCPUs
 Enforce serializations via taskset
 Slow down execution by disabling KVM

Slide 15 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Host- and Guest-side Tracing

Collect / retrieve guest traces via host
 gdb script (WIP)
 Paravirtual channel (WIP)
 Helpful if guest is unable to dump

Merged host/guest tracing
 Primary use: KVM debugging / optimizing
 ftrace instrumentation of KVM
 Trace infrastructure in QEMU
 Merge via stderr-trace > .../tracing/trace_marker

Can be useful for guest debugging as well
 Augment guest traces

with (virtual) hardware events

TwoWings, licensed under CC BY-3.0

Slide 16 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Python Helpers for Kernel Debugging

gdb 7 gained Python binding – let's use it!
 (gdb) lx-symbols [module paths]
loading vmlinux
scanning for modules in /data/linux/build-dbg
loading @0xffffffffa0067000: /data/.../scsi/sr_mod.ko
loading @0xffffffffa0055000: /data/.../mouse/psmouse.ko

 (gdb) lx-dmesg
[0.000000] Initializing cgroup subsys cpuset
[0.000000] Initializing cgroup subsys cpu
[0.000000] Linux version 3.1.0-dbg+ (jan@mchn199C.mch
[0.000000] Command line: root=/dev/sda2 resume=/dev/s

 (gdb) p $lx_per_cpu("current_task", 3)
$1 = (struct task_struct **) 0xffff88003fc0b5c0

 lx-tasks, $lx_current(), $lx_thread_info(task), ...

Slide 17 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Python Helpers for Kernel Debugging (2)

Not bound to QEMU/KVM setup
 kgdb
 Hardware debuggers with gdb support
 …

...but fast as hell this way – provided you...
 Reduce symbol look-ups

 Cache gdb.lookup_type() results
 ptr.cast() is faster than gdb.parse_and_eval()

 Bundle guest memory accesses

Helper plans
 ftrace buffer access
 ps-like process listing
 Results should be maintained in-tree (e.g. linux/scripts/gdb)
 Watch out for patches! (now really soon )

Slide 18 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Working Around gdb's x86 Limitations

Incomplete gdb register set
=> Use monitor info registers

gdb assumes x86 target arch = target mode
 Different remote protocols for 16/32 bit and 64 bit
 QEMU must switch arch on mode change
 gdb dislikes run-time changes
=> Avoid guest mode changes while gdb is attached!

But how to set early breakpoints then?
 Boot guest into desired mode
 Attach gdb
 Set hardware breakpoints in early code
 Reboot guest

Slide 19 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Post mortem –
crash Utility Support

Crash allows offline kernel analysis
 Reads kdump, netdump,

diskdump, …
 Linux-specific inspection commands
 Command pass-through to

embedded gdb core

Can read QEMU migration format
 Generated by migrate-to-file
 Triggered by libvirt dump
 Doesn't work with PCI pass-through (it's a hack...)

Better approaches
 Write out kdump from QEMU (WIP)
 Add kdump format support to gdb
 Use gdb helper scripts

Mark McArdle, licensed under CC BY-SA-2.0

Slide 20 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Features to Come

KVM guest debugging on non-x86
 Freescale's Book E Power cores

Device state visualization
 Capture and dump individual emulated devices
 Guest driver stuck? IRQ line blocked?
 Alternative to gdb qemu-system-$arch ...
 On hold due to device addressability issues
 See last slide for git repository

gdb tracepoint support
 Tracepoint = collect data @breakpoint
 kprobe + ftrace or KGTP – without guest support
 Ongoing student project
 Future plan: make tracepoints light-weight

 KVM in-kernel support, no user space exits
 Only stop affected VCPU

Eva Kröcher, licensed under CC BY-SA-2.5

Slide 21 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Needed gdb Enhancements

Decoupling of x86 architecture and operation mode
 Stable wire format will allow cross-mode debugging
 Overcome ugly QEMU workaround

Extended system register support
 x86: gdt, ldt, idt, tr, crX, MSRs, ...
 Some gaps also reported for PowerPC

x86 segmentation support
 Enable full BIOS / boot loader debugging
 Allow $(legacy_OS) debugging

Real multicore awareness
 Ongoing concept work regarding application debugging
 Extension for system-level debugging needed

 Per-CPU virtual memory view

Slide 22 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Summary

 Reduced test turn-around times

 Test environments “to go”

 Source-level kernel &
module debugging

 Safe driver or subsystem
development

 Full machine state access

 Prototype device models

 Pass-through real devices

 ...

+

+

=

Slide 23 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Thank you for listening!

Any questions?

Slide 24 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

QEMU

Demonstration

Scenario
 Detach gdb from kgdb

on target reboot
 Change causes crash

on reboot
 How to debug kgdb?

 -serial

telnet:127.0.0.1:1235,

server,nowait

 -s

Linux with
kgdb support

gdb vmlinux

virtual
serial

telnet localhost 12345
(kernel log)

agent-proxy

gdb vmlinux

gdbstub

Slide 25 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Resources

 www.linux-kvm.org

 wiki.qemu.org

 lkml.org/lkml/2011/11/5/83 (run-qemu.sh wrapper)

 sourceware.org/gdb/current/onlinedocs/gdb/Python-API.html
(Python API for writing gdb helper scripts)

 git.kiszka.org/?p=qemu.git;a=shortlog;h=refs/heads/queues/device-show
(device state visualization patches)

http://www.linux-kvm.org/
http://wiki.qemu.org/Main_Page
https://lkml.org/lkml/2011/11/5/83
http://sourceware.org/gdb/current/onlinedocs/gdb/Python-API.html
http://git.kiszka.org/?p=qemu.git;a=shortlog;h=refs/heads/queues/device-show

	Folie 1
	Agenda
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25

