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Agenda

 Motivation
 Introduction & basic concepts

 QEMU/KVM as a kernel debugger

 Upcoming features & improvements
 Summary
 [Demonstration]
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How Do You Do Kernel Development?

Test & debug on the development host
+Handy and fast (modules)
− Invasive (kernel reboots) and risky

Use separate test systems
+Architectural independence, fault containment
−Setup & maintenance efforts, hardware costs

Emulate target system
+Hardware independence, transparency,

reproducibility, costs
−Speed, potential modeling effort

Exploit hardware virtualization
+Emulation + speed
−Architectural support needed
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QEMU/KVM in a Nutshell

QEMU
 Multi-arch machine emulator
 Tons of device models
 gdb server & monitor
 KVM acceleration

KVM
 Gatekeeper for HW- and

kernel-assisted virtualization
 Fast device models
 PCI pass-through

qemu-kvm fork
 Optimal x86-QEMU/KVM
 Required for pass-through
 To be obsoleted by QEMU

Kernel

Hardware

 QEMU
Process

Guest
A

 QEMU
Process

Guest
B

KVM VFIOvhost ...

CPUs DevicesMemory
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QEMU/KVM as Test Platform –
Getting Started

Enable KVM (x86)
 modprobe kvm-intel/amd

qemu-kvm package
 Pick at least 0.15.x or 1.0.x

Start from command line
 Hairy but powerful interface
 Can be as simple as
qemu-system-$arch /path/to/image

Use run-qemu.sh wrapper
 lkml.org/lkml/2011/11/5/83
 Beginners guidance, kernel pick-up from build directory

Use libvirt
 Multi-VM management, privilege separation, language bindings
 Command line pass-through for enhance QEMU features

Nubae, licensed under CC BY-3.0
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Virtual Consoles

Benefits
 No wiring, no limits
 Can be faster than

real ports

Multiple frontend options
 Serial port emulation
 virtio
 VGA text console

...and backends
 Local tty
 TCP/Telnet
 Pipe
 File
 …
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Guest Image Management

Disk images
 Check qemu-img for image management
 Use raw format for speed – and loop-back mounting
 Use qcow2 or qed for thin provisioning

Disk pass-through (for the brave ones)
 qemu-system-$arch -snapshot /dev/sda
 Will boot your host (but does not modify it)
 Requires root privileges, forgetting -snapshot is lethal

NFS root
 Classic way in embedded
 Use virtio-net for optimal performance

9pfs
 File system pass-through
 Use for rootfs and/or as shared folder
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Taking and Using Snapshots

Use cases
 Accelerate test startup
 Roll back to consistent state

Disk image snapshots
 qemu-system-$arch disk.img -snapshot
 Create live (snapshot_blkdev) or offline (qemu-img)
 Merge-back live (commit) or offline

Machine snapshots
 loadvm/savevm with qcow2 images
 Migrate to disk (migrate exec:'cat > snapshot.img')
 Upcoming live backup

And with fs pass-through?
 Host-side snapshots (lvm, btrfs, unionizing fs)
 Need to coordinate fs and machine snapshot
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Device Pass-Through

Various buses & devices supported
 PCI (x86-only so far)
 USB (1.1 & 2.0, experimental 3.0)
 Smartcards
 Bluetooth HCI
 SCSI (might be buggy)
 TPM (upcoming)

Beware of host controller emulation flaws!

Scenarios
 Satisfy HW dependencies w/o emulation
 Enable driver development against real HW
 Shorten turn-around times using snapshots +

device hotplug or suspend/resume
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QEMU as Kernel Debugger –
Basics

Imagine QEMU as JTAG hardware debugger – and more!

Two central interfaces
 Built-in gdb server
 Monitor console
 Both support various transports

gdb server quick-start
 host# qemu-system-$arch -s
 Build kernel with CONFIG_DEBUG_INFO
 host# gdb vmlinux
 (gdb) target remote :1234

Optional: load module symbols
 guest# cat /proc/modules

Look up module base address
 (gdb) add-symbol-file /path/to/module.ko <base address>

Jamie Guinan, licensed under CC BY-SA-3.0
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QEMU Monitor

Inspect the virtual machine
 info qtree, mtree,
pci, usb, network,
cpus, registers, …

 x, xp (memory access)
 i, o  (I/O port access)

Control the VM
 Stop/continue, trigger reset or power button
 Hot plug devices
 Inject NMI, MCE, PCIe error
 Late gdb server activation, ...

Access channels
 Dedicated console (e.g. virtual console – “CTRL-ALT-2”)
 Via gdb session ((gdb) monitor info registers)
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Soft, Hard or Step by Step?
KVM Breakpoint Architecture

Software breakpoints
 Unlimited resource
 Inject trap instruction into guest code
 Intercept traps

 Report host originated traps to gdb
 Reinject guest originated traps

Hardware breakpoints
 Limited by hardware resources
 If in conflict with guest usage, host wins

Single stepping
 Similar to hardware breakpoints
 x86: TF can “leak” to guest stack

Note: No limitations and guest visibility in CPU emulation mode
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Using Watchpoints

Helpful to hunt memory corruptions
 Provided corruptions hits known area
 Provided low rate of valid changes

Beware of hard vs. soft
 (gdb) watch my_global_var
Hardware watchpoint 1: my_global_var
=> Uses limited HW resources
=> Fails if sizeof(my_global_var) > watchpoint capacity

 (gdb) watch *my_local_ptr
Watchpoint 1: *my_local_ptr
=> Will single step, will be removed when leaving scope

 (gdb) watch -l[ocation] *my_local_ptr
Hardware watchpoint 1: -location *my_local_ptr
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Working with SMP

VCPU number limits (x86)
 Soft: 160
 Hard: 254
 Virtual CPUs > physical CPUs:

lock-holder preemptions, slowdowns!

Model for gdb: VCPU = thread
 Switch VCPU via thread command
 Switches memory view as well!
 Do not try to debug user land this way...
 Note: monitor uses different “current VCPU” (see cpu command)

Triggering SMP races
 Play with number of VCPUs
 Enforce serializations via taskset
 Slow down execution by disabling KVM
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Host- and Guest-side Tracing

Collect / retrieve guest traces via host
 gdb script (WIP)
 Paravirtual channel (WIP)
 Helpful if guest is unable to dump

Merged host/guest tracing
 Primary use: KVM debugging / optimizing
 ftrace instrumentation of KVM
 Trace infrastructure in QEMU
 Merge via stderr-trace > .../tracing/trace_marker

Can be useful for guest debugging as well
 Augment guest traces

with (virtual) hardware events

TwoWings, licensed under CC BY-3.0
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Python Helpers for Kernel Debugging

gdb 7 gained Python binding – let's use it!
 (gdb) lx-symbols [module paths]
loading vmlinux
scanning for modules in /data/linux/build-dbg
loading @0xffffffffa0067000: /data/.../scsi/sr_mod.ko
loading @0xffffffffa0055000: /data/.../mouse/psmouse.ko

 (gdb) lx-dmesg
[    0.000000] Initializing cgroup subsys cpuset
[    0.000000] Initializing cgroup subsys cpu
[    0.000000] Linux version 3.1.0-dbg+ (jan@mchn199C.mch 
[    0.000000] Command line: root=/dev/sda2 resume=/dev/s 

 (gdb) p $lx_per_cpu("current_task", 3)
$1 = (struct task_struct **) 0xffff88003fc0b5c0

 lx-tasks, $lx_current(), $lx_thread_info(task), ...
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Python Helpers for Kernel Debugging (2)

Not bound to QEMU/KVM setup
 kgdb
 Hardware debuggers with gdb support
 …

...but fast as hell this way – provided you...
 Reduce symbol look-ups

 Cache gdb.lookup_type() results
 ptr.cast() is faster than gdb.parse_and_eval()

 Bundle guest memory accesses

Helper plans
 ftrace buffer access
 ps-like process listing
 Results should be maintained in-tree (e.g. linux/scripts/gdb)
 Watch out for patches! (now really soon )
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Working Around gdb's x86 Limitations

Incomplete gdb register set
=> Use monitor info registers

gdb assumes x86 target arch = target mode
 Different remote protocols for 16/32 bit and 64 bit
 QEMU must switch arch on mode change
 gdb dislikes run-time changes
=> Avoid guest mode changes while gdb is attached!

But how to set early breakpoints then?
 Boot guest into desired mode
 Attach gdb
 Set hardware breakpoints in early code
 Reboot guest
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Post mortem –
crash Utility Support

Crash allows offline kernel analysis
 Reads kdump, netdump,

diskdump, …
 Linux-specific inspection commands
 Command pass-through to

embedded gdb core 

Can read QEMU migration format
 Generated by migrate-to-file
 Triggered by libvirt dump
 Doesn't work with PCI pass-through (it's a hack...)

Better approaches
 Write out kdump from QEMU (WIP)
 Add kdump format support to gdb
 Use gdb helper scripts

Mark McArdle, licensed under CC BY-SA-2.0
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Features to Come

KVM guest debugging on non-x86
 Freescale's Book E Power cores

Device state visualization
 Capture and dump individual emulated devices
 Guest driver stuck? IRQ line blocked?
 Alternative to gdb qemu-system-$arch ...
 On hold due to device addressability issues
 See last slide for git repository

gdb tracepoint support
 Tracepoint = collect data @breakpoint
 kprobe + ftrace or KGTP – without guest support
 Ongoing student project
 Future plan: make tracepoints light-weight

 KVM in-kernel support, no user space exits
 Only stop affected VCPU

Eva Kröcher, licensed under CC BY-SA-2.5



Slide 21 2012-03-18 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Needed gdb Enhancements

Decoupling of x86 architecture and operation mode 
 Stable wire format will allow cross-mode debugging
 Overcome ugly QEMU workaround

Extended system register support
 x86: gdt, ldt, idt, tr, crX, MSRs, ...
 Some gaps also reported for PowerPC

x86 segmentation support
 Enable full BIOS / boot loader debugging
 Allow $(legacy_OS) debugging

Real multicore awareness
 Ongoing concept work regarding application debugging
 Extension for system-level debugging needed

 Per-CPU virtual memory view
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Summary

 Reduced test turn-around times

 Test environments “to go”

 Source-level kernel &
module debugging

 Safe driver or subsystem 
development

 Full machine state access

 Prototype device models

 Pass-through real devices

 ...

+

+

=
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Thank you for listening!

Any questions?
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QEMU

Demonstration

Scenario
 Detach gdb from kgdb

on target reboot
 Change causes crash

on reboot
 How to debug kgdb?

 -serial

telnet:127.0.0.1:1235,

server,nowait

 -s

Linux with
kgdb support

gdb vmlinux

virtual
serial

telnet localhost 12345
(kernel log)

agent-proxy

gdb vmlinux

gdbstub
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Resources

 www.linux-kvm.org

 wiki.qemu.org

 lkml.org/lkml/2011/11/5/83 (run-qemu.sh wrapper)

 sourceware.org/gdb/current/onlinedocs/gdb/Python-API.html
(Python API for writing gdb helper scripts)

 git.kiszka.org/?p=qemu.git;a=shortlog;h=refs/heads/queues/device-show
(device state visualization patches)

http://www.linux-kvm.org/
http://wiki.qemu.org/Main_Page
https://lkml.org/lkml/2011/11/5/83
http://sourceware.org/gdb/current/onlinedocs/gdb/Python-API.html
http://git.kiszka.org/?p=qemu.git;a=shortlog;h=refs/heads/queues/device-show
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