Single Sign-on für Webanwendungen

Chemnitzer Linuxtage 2024 17. März 2024

Silke Meyer silke.meyer@univention.de @smeyer@univention.social / @freiefunken@mastodon.social

Univention

- » Debian-basierte Appliance für Identity und Access Management (IAM) rund um OpenLDAP
 - » zwei Ausrichtungen: allgemeiner Univention Corporate Server und UCS@school
- » neu: containerbasiertes IAM mit den Kernkomponenten von UCS
 - » Univention Nubus
- » Zusammenarbeit mit öffentlichen Verwaltungen, Bildungsträgern, Firmen

Agenda

- 1. Use Cases für Web-SSO
- 2. Einführung in die beteiligten Komponenten
- 3. Die Protokolle SAML 2.0 und OIDC 1.0
- 4. Freie Identity Provider-Software: Shibboleth IdP und Keycloak
- 5. Demo

Use Cases für Single Sign-on

- » Nutzer*innen-Perspektive: nur 1x einloggen und die IdP-Session im Browser für den Zugriff auf diverse Anwendungen nutzen
- » Administrator*innen-Perspektive:
 - » keine dienstspezifischen Credentials, Passwörter bleiben immer im IdM
 - » Absicherung eines zentralen Logins (z.B. mit MFA)
 - » Kontrolle über Attributfreigaben (Welcher Dienst bekommt welche weiteren Attribute aus dem IdM?)
- » native Apps und Geräteauthentifizierung (OAuth/OIDC)

Einführung in die beteiligten Komponenten

Identity Provider

- » Authentisierung:
 - » eine oder mehrerer dahinterliegender Datenquellen mit den Nutzeraccounts
 - » Identity Management System (IdM), Verzeichnisdienst, Datenbank, Webservice
- » nach erfolgreichem Login Attributfreigabe:
 - » Abfrage konfigurierter Regeln
 - » Herausgabe ausgewählter Attribute an den anfragenden Dienst (z.B. User Identifier, Berechtigungsinformationen)

Service Provider (a.k.a. Relying Party)

- » Wording: oft ist der angebundene Dienst selbst gemeint
- » Software, die eine Ressource schützt und den Zugriff auf sie reguliert
 - » Delegation des Logins an einen IdP
 - » Entgegennahme von Attributen und Weitergabe an die eigentliche Anwendung
 - » implementierungsspezifisch: Autorisierung aufgrund dieser Informationen in SP-Software oder Anwendung

Ablauf im einfachsten Fall

- » Nutzer*in klickt im Browser bei Dienst "Login"
- » Umleitung zur Loginseite eines IdP
- » Login → IdP authentisiert

- → "Wer ist das?" Authentication
- » Umleitung zur geschützten Anwendung → IdP überträgt Informationen (z.B. Attribute) an SP
- » SP prüft, ob aufgrund der Infos Zugriff gegeben wird

→ "Was darf die hier?" Authorization

- » Nutzer*in ist eingeloggt und darf Dinge tun
- » Nutzer*in klickt auf zweiten angeschlossenen Dienst und ist schon angemeldet

Autorisierung von Zugriffen auf Dienst-Seite

- » Autorisierungsstrategien
 - » alle authentisierten Nutzer*innen
 - » auf Basis von Gruppenzugehörigkeiten im IdM (GBAC), Bsp. Team
 - » auf Basis von Rollen (RBAC), Bsp. alle in der Rolle Azubi
 - » auf Basis von Attributen (ABAC), Bsp. alle mit einer Berechtigung

- → feingranular und flexibel
- » im IdP: Konfiguration der richtigen Informationsfilter für jeden angebundenen Dienst
- » unterschiedliche Umsetzung in Protokollen und in Software-Lösungen

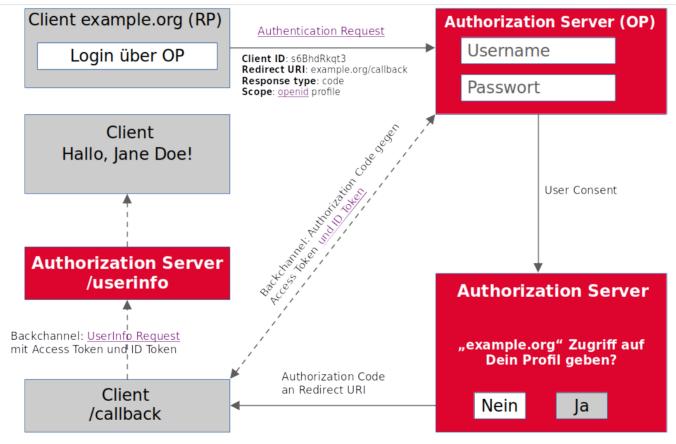
Vertrauensstellung

- » Vorab-Austausch bestimmter Eckdaten für die Kommunikation: Metadaten
 - » eindeutige Identifier der Systeme
 - » Kommunikationsendpunkte
 - » Zertifikate für Signierung / Verschlüsselung
- » optional: signierte Metadaten (mit Signaturvalidierung ;))
- » Wie heißt die Gegenstelle? Mit welchen Zertifikaten kann die signierte Kommunikation validiert werden? Welche Kommunikationsstandards unterstützt die Gegenstelle? An welche Endpunkte sollen die Requests geschickt werden?
- » SAML: xml / OIDC: ISON

Die Protokolle SAML 2.0 und OIDC 1.0

Die Protokolle SAML 2.0 und OIDC 1.0

SAML 2.0 (2005/2008)	OIDC 1.0 (2012)
Browser-only (fast)	Browser, native Apps, Geräte (versch. Flows)
xml-basiert, HTTP- / SOAP-Requests	JSON-basiert, HTTP-/REST-API
Authentisierung + Autorisierung	Erweiterung von OAuth 2.0 um Konzept von Identität
sehr ausgereift, sehr verbos	geringere Payload
Vertrauen über Vorab-Austausch von (signierten) xml-Metadaten	Vertrauen über Vorab-Austausch von Client ID, Client Secret u. Redirect URI
Spezifikation durch OASIS	Spezifikation durch OpenID Foundation


Terminologien (Auszug)

SAML	OIDC
Identity Provider / IdP	OpenID Connect Provider / OP
Service Provider / SP	Relying Party / RP
Entity ID (unique Identifier des IdP)	Client ID (unique Identifier der RP)
Attribut	Claim
-	Scope (thematisch gebündelte Claims)
SAML Assertion (xml)	Access Token, Refresh Token, ID Token (JWT)
Signieren/Verschlüsseln mit x509-Zert.	Signieren/Verschlüsseln mit JWK

Von OAuth 2.0 (2012) zu OIDC 1.0 (2014)

- » OAuth 2.0
 - » delegierte Autorisierung ohne Preisgabe des Passwortes
 - » Informationen mit Dritten teilen (z.B. mit einer Website)
 - » API-Autorisierung über Access Tokens (JSON Web Tokens)
- » OIDC 1.0
 - » Erweiterung von OAuth 2.0 um einen ID Token zur Abbildung einer Identität
 - » i.d.R. generierte Identifier: subject claim (subject public, subject pairwise)
 - » Angefragter zusätzlicher Scope "openid" im Authentication request löst den Unterschied zu OAuth 2.0 aus

OIDC 1.0

Quelle: Nate Barbettini, Okta https://www.youtube.com/watch?v=996OiexHze0

OIDC Token Response (gekürzt)

» Übertragung im HTTP-Header » HTTP/1.1 200 OK Content-Type: application/json Cache-Control: no-store Pragma: no-cache "access_token": "SlAV32hkKG", "token_type": "Bearer", "refresh_token": "8xL0xBtZp8", "expires in": 3600, "id_token": "eyJ0eXAiOiJKiJIUzI1NiJ9.EyJpc3MiOiJA4MTkzOD.dBjft4CVP-mhb1p1r wWOEjXk"

Freie Identity Provider-Software (Auswahl)

Shibboleth IdP und Keycloak

Shibboleth IdP	Keycloak IdP
Shibboleth Consortium, Apache 2.0-Lizenz	unter Dach von RedHat, Apache 2.0-Lizenz
Java + Datenbank	Java + Datenbank
SAML, CAS, m. Plugins: OIDC, OAuth 2.0	SAML, OIDC, OAuth 2.0
- Konfig über zig xml- und properties-Dateien	- Konfig über unintuitive Web-GUI
+ aussagekräftiges Logging	+ REST API und vorgesehener Betrieb in Cloud-Kontexten

SSO-Debugging

- » An welcher Stelle im Login-Flow tritt der Fehler auf?
- » Welche Seite meldet den Fehler? → beide Seiten betrachten, wenn möglich
- » versch. Browser / Profile nutzen
- » Logs
 - » slapd-Log z.B. auf "stats" setzen (syslog/Journal)
 - » Shibboleth: 3 Einstellungen auf "DEBUG": idp.loglevel.idp, idp.loglevel.messages, idp.loglevel.encryption
- » Keycloak-Logging...
- » Log der jeweiligen Client-Anwendung prüfen

SSO-Debugging

- » Sind die in den JSON-Konfigurationen / xml-Metadaten publizierten Kommunikationsendpunkte erreichbar?
- » Stimmt das tatsächlich verwendete Schlüsselmaterial überein mit dem in den JSON-Konfigurationen / xml-Metadaten angegebenen?
- » Loadbalancer oder Proxy vor dem IdP?
- » Welche Attribute / Claims erwartet die geschützte Anwendung? Welche werden vom IdP übertragen?

Demo

- » xml-Metadaten, JSON-Konfigurationsangaben
- » Konfiguration auf IdP-Seite:
 - » Grundeinstellungen, IdM-Anbindung Shibboleth IdP / Keycloak IdP
 - » SAML SP bzw. OIDC RP in Shib / KC
 - » Freigaberegeln für angebundene Dienste in Shib / KC
- » SAML-Login, OIDC-Login, Logdateien
- » eine IdP-Session bietet Zugriff auf mehrere Dienste

Links

- » Buch: Stian Thorgersen, Pedro Igor Silva: Keycloak Identity and Access Management for Modern Applications, Packt Publishing, Birmingham/Mumbai 2023 (2. Aufl.) → Repo
- » Shibboleth IdP: Doku, Download
- » Keycloak
- » Zum Spielen:
 - » Apache-Modul OIDC RP: mod_auth_openidc
 - » Apache-Modul Shibboleth SP mod_shib (SAML)
 - » Blog-Artikel von Björn Schießle zur Nextcloud-Anbindung

Kontaktdaten

Silke Meyer IT Consultant <silke.meyer@univention.de> +49 421 22232-106

Univention GmbH Mary-Somerville-Str. 1 28359 Bremen Univention GmbH Berlin Mariannenstr. 9-10 10999 Berlin Univention North America Inc. 7241 185th AVE NE #3206 Redmond, WA 98073-3206