

How to run LibreOffice
inside your web page
WASM WebWidget & JavaScript

Thorsten Behrens <thorsten.behrens@allotropia.de>
allotropia software GmbH

2025-03-23, Chemnitz LinuxTage

mailto:thorsten.behrens@allotropia.de

 2

LibreOffice
Technology

 3

LibreOffice
Technology

 4

● LibreOffice in the browser
● fully client side – as a Web Assembly binary
● no server, no cloud services are needed
● built with the Emscripten toolchain
● currently using Qt for UI

LibreOffice
WASM

 5

LibreOffice
WASM

Timeline

6

 7

First LibreOffice
WASM demo at
FOSDEM

Project Kickoff
w/
NLNet funding

Oct 2020

Oct 2021

LibreOffice WASM
pixel on the screen

LibreOffice WASM
pixel on the screen

Oct 2021

Feb 2022

Calc supported
Aug 2022

Headless PDF
conversion

Feb 2022

UNO API bindings
for JavaScript

April 2024

ZetaJS Wrapper

Nov 2024

Size, speed &
programmability
improvements

Experimenting with
frontends & toolkits

 8

● Project kickoff:
– October 2020

● Build env & configury & emscripten setup
– December 2020 – cross-building of a subset works; Docker

builders for CI available
● Get the first LibreOffice-rendered pixel on the screen

– October 2021 – after a death march of one year…
● Get Writer practically working

– February 2022 – first fully working demo presented at
FOSDEM

Timeline

 9

● Get Calc and pdf export practically working:
– August 2022 – got Calc working
– September 2022 – got headless PDF conversion going

● Get Collabora Online port going:
– January 2023 – got first demo working

● Got embind / UNO bindings going
– April 2024: implementation end2end ready
– first experiments & demo

Timeline

 10

● idiomatic JavaScript bindings
– April `24 development started
– October `24 launched v1.0 npm package
– bugfixing, performance & size improvements
– March `25 lots of papercuts solved

● clipboard working, Impress support added, font
antialiasing & canvas resizing

Timeline

 11

● Ongoing
– bugfixing, performance & size improvements
– further size reductions
– OPFS support (WASM filesystem)
– zetajs cleanups & convenience library

Timeline

Step 1: WASM

12

 13

● LibreOffice is an autotools & GNU make project
– stuck with that, avoid other parallel build systems
– and its already pretty portable, cross-compilation is

supported out of the box

● LibreOffice has its own GUI abstraction
– with plugins for Gtk, Qt/KF5, Win32 and OSX
– with Qt5 supporting WASM natively, we went with

that

Approach

 14

● LibreOffice is basically c++ (by and large c++17)
– we went with emscripten as platform compiler (pinned to

2.0.31 currently)
● We didn’t want to use any experimental WASM features

– no threading
– no dynamic linking (sadly require a re-tooling of the build

system)
– no native WASM exceptions

● We wanted to focus on Writer initially (and save size by
not building/shipping the rest)

Approach

 15

● emscripten & browser tools
– several moving targets
– random setups (emsdk activate / install not repeatable)
– In 2020: no source-level debugging, SharedArrayBuffer limitations,

unstable WASM impls
● LibreOffice gbuild make system w/o support for static linking

– GNU make with a ton of $(eval.. & $(call .. self-made,
functional build system

– 88 commits, 4kLOC change to add that
● LibreOffice gbuild make system with dependency loops

– UNO component system for dependeny inversion
– once we link statically, we get loops

Approach

 16

● LibreOffice UNO components
– no static dependencies, but factory & runtime resolution
– switched to static dependency per toplevel application

● LibreOffice needs a ton of secondary files (config, fonts, gui descriptions)
– building a virtual embedded filesystem image

● Linker problems:
– Link time grew quadratically with symbol amount
– at some stage took >1h and >64GB to link
– debug build now links in ~30s; not great but manageable
– optimized build still needs huge amounts of memory and time, but saves 25%

binary size with -O2
– always separate debug data, downloadable on demand (DWARF)

Approach

 17

Browser

JavaScript

Wasm

Approach

 18

Browser

JavaScript

Wasm

Approach

 19

Browser

JavaScript

Wasm

Emscripten
POSIX

simulation

compiled from
C++ via

Emscripten

Approach

 20

Browser

Approach

JavaScript

Wasm

Emscripten
POSIX

simulation

compiled from
C++ via

Emscripten

JavaScript

Wasm

Emscripten
POSIX

simulation

compiled from
C++ via

Emscripten

JavaScript

Wasm

Emscripten
POSIX

simulation

compiled from
C++ via

Emscripten

JavaScript

Wasm

Emscripten
POSIX

simulation

compiled from
C++ via

Emscripten

 21

● Every JS instance in the browser runs off an
event loop:
– onclick, oninput, ...
– async/await, Promises
– postMessage/onmessage

Approach

 22

● LibreOffice runs off a main-thread event loop:
– code handling one event
– event loop
– VCL/Qt
– Application::Main
– main
– browser event loop

Approach

 23

● LibreOffice runs off a main-thread event loop:
– code handling one event
– event loop
– VCL/Qt
– Application::Main
– main
– browser event loop

Approach

 24

Approach

● turns out developing for WASM was super-hard
– long link times, huge linking memory usage, impossible to get

decent turn-around times, debugging WASM was not efficient -
basically reading disassembled WASM code
→ side-stepped via a native contraption

● turns out classical GUI application & JS event loops are
incompatible

→ side-stepped via threading
→ waiting for asyncify to land

● be creative & never give up! :)

https://emscripten.org/docs/porting/asyncify.html

 25

LibreOffice WASM
in the browser
● ~working since end `23
● Qt5 for UI
● embedded in a canvas

UNO API exposed to JS
● ~working since early `24
● utilizes embind
● too verbose & lots of boilerplate
● not idiomatic JavaScript, using the C++

API via JS bindings

LibreOffice WASM
to ZetaJS ZetaJS

● launched late `24
● idiomatic JS

experience
● trivially embed on any

webpage

Step 2: embind

26

 27

● LibreOffice has a rich (>4000 classes/types)
programmability API
– usable via Basic, Python, Java, C++, C##, etc

● needs to be available for a Web application
– requires calling WASM code from JS
– ...which is super-ugly – function ptrs, parameter

mapping, return value mapping, ...

Approach

 28

● emscripten’s embind to the rescue

Approach

#include <emscripten/bind.h>
using namespace emscripten;

float lerp(float a, float b, float t) {
 return (1 - t) * a + t * b;
}

EMSCRIPTEN_BINDINGS(my_module) {
 function("lerp", &lerp);
}

 29

● auto-generated for all of LibreOffice UNO
● available in the WASM binaries
● but: JS side of that is nasty

– manual lifecycle handling
– clunky lookup
– no syntactic sugar, no automatic type conversions
– extra-verbose (hyper-verbose at JS-side interfaces)

Approach

 30

LibreOffice WASM
in the browser
● ~working since end `23
● Qt5 for UI
● embedded in a canvas

UNO API exposed to JS
● ~working since early `24
● utilizes embind
● too verbose & lots of boilerplate
● not idiomatic JavaScript, using the C++

API via JS bindings

LibreOffice WASM
to ZetaJS ZetaJS

● launched late `24
● idiomatic JS

experience
● trivially embed on any

webpage

Step 3: zetaJS

31

 32

● Goals:
– make using LibreOffice a pleasant & streamlined

experience
● Via:

– provide an npm package for 5-mins setup
– have everything available via CDN – no need to

deploy WASM binaries or mess with CORS
headers

– provide a nice, idiomatic JS wrapper: zetaJS

Approach

 33

● zetaJS can:
– map the UNO type system nicely into JS
– like integers, strings, sequence, Any objects
– UNO interface types & exceptions: mapped to JS

types, throwing possible via
Module.throwUnoException

– provides iterators where useful
– handles object lifecycles transparently

Approach

 34

LibreOffice WASM
in the browser
● ~working since end `23
● Qt5 for UI
● embedded in a canvas

UNO API exposed to JS
● ~working since early `24
● utilizes embind
● too verbose & lots of boilerplate
● not idiomatic JavaScript, using the C++

API via JS bindings

LibreOffice WASM
to ZetaJS ZetaJS

● launched late `24
● idiomatic JS

experience
● trivially embed on any

webpage

Demo 1
https://zetaoffice.net/demos/web-office/

https://zetaoffice.net/demos/web-office/

 36

ZetaJS

JS UNO Bindings

LibreOffice WASM

 37

const css = Module.uno.com.sun.star;
const desktop = css.frame.Desktop.create(
 Module.getUnoComponentContext());
let xModel = desktop.getCurrentFrame().getController().getModel();
if (xModel === null || !css.text.XTextDocument.query(xModel))
{
 const args =
 new Module.uno_Sequence_comsunstar$beans$PropertyValue(
 0, Module.uno_Sequence.FromSize);
 xModel = css.frame.XComponentLoader.query(desktop)
 .loadComponentFromURL(
 'file:///android/default-document/example.odt',
 '_default', 0, args);
 args.delete();
};

ZetaJS

LibreOffice WASM

JS UNO Bindings

../../../android/default-document/example.odt

 38

const css = Module.uno.com.sun.star;
const desktop = css.frame.Desktop.create(
 Module.getUnoComponentContext());
let xModel = desktop.getCurrentFrame().getController().getModel();
if (xModel === null || !css.text.XTextDocument.query(xModel))
{
 const args =
 new Module.uno_Sequence_comsunstar$beans$PropertyValue(
 0, Module.uno_Sequence.FromSize);
 xModel = css.frame.XComponentLoader.query(desktop)
 .loadComponentFromURL(
 'file:///android/default-document/example.odt',
 '_default', 0, args);
 args.delete();
};

ZetaJS

LibreOffice WASM

JS UNO Bindings

../../../android/default-document/example.odt

 39

const css = zetajs.uno.com.sun.star;
const desktop = css.frame.Desktop.create(
 zetajs.getUnoComponentContext());
let xModel = desktop.getCurrentFrame().getController().getModel();
if (!xModel?.queryInterface(zetajs.type.interface(css.text.XTextDocument)))
{
 xModel = desktop.loadComponentFromURL(
 'file:///android/default-document/example.odt',
 '_default', 0, []);
}

ZetaJS

LibreOffice WASM

JS UNO Bindings

../../../android/default-document/example.odt

Why?

 41

ConvenienceData Privacy Extensibility Scalability & Speed

 42

Runs client sided in the browser, your data never
leaves your machine.

No server backend required for computing
anything.

Only ~50 MB WASM binary needs serving.

ConvenienceData Privacy Extensibility Scalability & Speed

 43

● Web browser as the platform

● accessible from any device

● no installation, configuration
ready to go – everywhere

● w/ zetaJS trivially embeddable

● UNO API boilerplate abstracted
away

● CDN at your disposal
(* but obviously you’re not depended on it..)

User Dev.

ConvenienceData Privacy Extensibility Scalability & Speed

 44

ConvenienceData Privacy Extensibility Scalability & Speed

Use UNO API
directly from
JavaScript

Customize UI…
or anything
LibreOffice!

Communicate
both ways
WASM↔JavaScript

Implement
any custom
workflow!

 45

ConvenienceData Privacy Extensibility Scalability & Speed

Serve it with ease

No user count bottleneck. The client computes ;)

No interaction latency

Import/Export files immediately

More Demo time! :)

Use cases

 48

Example
Use Cases

Integrate with Line of Business Applications

● order administration

● warehouse software

● accounting / bookkeeping

● document generation & conversion

...

 49

Example
Use Cases

Programmable documents Enable

● In-house mapping of processes

● Tons of powerful features

macros, charts, letter templates, …

spreadsheets, dynamic formatting, …

How?

 51

Maturity of the platform
● Emscripten
● WASM
● Debugging...

Size of the filesystem image
~ 100M with all LO fonts, can be
stored locally and split if needed
→ can use webfonts?

Size of the resulting WASM binary
Currently: packed = 35M, optimised
= 150M, debug = 200M + ~1G
separate DWARF info

Challenges

Size of the problem
Link time demands
How much code needs adapting?

 52

Font aliasing issues squashed!

Browser scaling, high DPI support / improvements.

Impress is now supported.

Recent
News

Future
Outlook

Experimenting with better UI toolkits

Typescript!

Better mobile/touch support

Better responsiveness

 53

See some more live demos
Visit <zetaoffice.net>

Use it in your favorite, front-end framework
Install via `npm i zetajs`

Check the examples
Visit <github.com/allotropia/zetajs/examples>

Give It
A Spin!

https://zetaoffice.net/
https://github.com/allotropia/zetajs/examples

Questions & Answers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

