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How to run LibreOffice

inside your web page
WASM WebWidget & JavaScript
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e LibreOffice in the browser
WA * fully client side — as a Web Assembly binary
* No server, no cloud services are needed
LibreOffice * built with the Emscripten toolchain
WASM * currently using Qt for Ul
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He heard quiet steps behind him. That didn't bode well. Who could b

ollowing him this late at night and in this deadbeat part of town? Was
here another crook who'd had the same idea, and was now watching
him and waiting for a chance to grab the fruit of his labor? Or did th
steps behind him mean that one of many law officers in town was on t
him and just waiting to pounce and snap those cuffs on his wrists?
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First LibreOffice

LibreOffice WASM WASM demo at ~ Headless PDF
pixel on the screen FOSDEM conversion ZetadS Wrapper
Oct 2021 Feb 2022 Feb 2022 Nov 2024
T T T T » Size, speed &
l l l l programmability
improvements
Oct 2020 Oct 2021 Aug 2022 April 2024
Project Kickoff LibreOffice WASM  Calc supported UNO API bindings Experimenting with
w/ pixel on the screen for JavaScript frontends & toolkits

NLNet funding



Timeline

Project kickoff:
~ October 2020

Build env & configury & emscripten setup

~ December 2020 — cross-building of a subset works; Docker
builders for Cl available

Get the first LibreOffice-rendered pixel on the screen
~— October 2021 — after a death march of one yeatr...

Get Writer practically working

~ February 2022 — first fully working demo presented at
FOSDE



Timeline

* Get Calc and pdf export practically working:
— August 2022 — got Calc working
— September 2022 — got headless PDF conversion going

* Get Collabora Online port going:
— January 2023 — got first demo working

* Got embind / UNO bindings going
— April 2024 implementation end2end ready
— first experiments & demo



Timeline

 idiomatic JavaScript bindings

April 24 development started
October 24 launched v1.0 npm package
bugfixing, performance & size improvements

March 25 lots of papercuts solved

* clipboard working, Impress support added, font
antialiasing & canvas resizing
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Timeline

* Ongoing
- bugfixing, performance & size improvements
- further size reductions
— OPFS support (WASM filesystem)
- zetajs cleanups & convenience library
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Approach

* LibreOffice Is an autotools & GNU make project
— stuck with that, avoid other parallel build systems

- and its already pretty portable, cross-compilation is
supported out of the box

e |ibreOffice has its own GUI abstraction
— with plugins for Gtk, Qt/KF5, WIin32 and OSX

- with Qt5 supporting WASM natively, we went with
that
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Approach

* LibreOffice is basically c++ (by and large c++17)

— we went with emscripten as platform compiler (pinned to
2.0.31 currently)

* We didn’t want to use any experimental WASM features

— no threading

— no dynamic linking (sadly require a re-tooling of the build
system)

— no native WASM exceptions

* We wanted to focus on Writer initially (and save size by
not building/shipping the rest)
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Approach

* emscripten & browser tools
— several moving targets
— random setups (emsdk activate / 1install not repeatable)

— In 2020: no source-level debugging, SharedArrayBuffer limitations,
unstable WASM impls

* LibreOffice gbuild make system w/o support for static linking

— GNU make with aton of $(eval.. & $(call .. self-made,
functional build system

— 88 commits, 4kLOC change to add that

* LibreOffice gbuild make system with dependency loops
— UNO component system for dependeny inversion

— once we link statically, we get loops
15



Approach

LibreOffice UNO components
— no static dependencies, but factory & runtime resolution
- switched to static dependency per toplevel application

LibreOffice needs a ton of secondary files (config, fonts, gui descriptions)
- building a virtual embedded filesystem image

Linker problems:
- Link time grew quadratically with symbol amount

at some stage took >1h and >64GB to link
debug build now links in ~30s; not great but manageable

- optimized build still needs huge amounts of memory and time, but saves 25%
binary size with -O2

- always separate debug data, downloadable on demand (DWARF)
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Browser

JavaScript

Wasm

Approach
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Wasm

Approach
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JavaScript

Emscripten
POSIX
simulation

Wasm

compiled from
C++ via
Emscripten

Approach
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Approach

* Every JS instance in the browser runs off an
event loop:

— onclick, oninput, ...
— async/await, Promises
- postMessage/onmessage
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Approach

* LibreOffice runs off a main-thread event loop:
— code handling one event
— event loop
- VCL/Qt
— Application::Main
~— main
— browser event loop
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Approach

* LibreOffice runs off a main-thread event loop:
— code handling one event
— event loop
— VCL/O¢
— Api.c- a0n::Main
- m:
— browser event loop
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Approach

* turns out developing for WASM was super-hard

~ long link times, huge_ Iinking memory usage, impossible to get
decent turn-around times, ebug%/g\;/m WASM was not efficient -
basically reading disassembled WASM code

- Side-stepped via a native contraption

* turns out classical GUI application & JS event loops are
Incompatible

— side-stepped via threading
- waliting for to land

* be creative & never give up! )
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https://emscripten.org/docs/porting/asyncify.html
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LibreOffice WASM

to ZetadS

LibreOffice WASM
in the browser

* ~working since end 23
* Qt5 for Ul
* embedded in a canvas

ZetadS

* launched late 24

 idiomatic JS
experience

* trivially embed on any
webpage

UNO API exposed to JS

~working since early "24
utilizes embind
too verbose & lots of boilerplate

not idiomatic JavaScript, using the C++
API via JS bindings o5






Approach

 LibreOffice has a rich (>4000 classes/types)
programmability AP|

— usable via Basic, Python, Java, C++, C##, etc

* needs to be available for a Web application
— requires calling WASM code from JS

- ...which Is super-ugly — function ptrs, parameter
mapping, return value mapping, ...
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Approach

e emscripten’s embind to the rescue

#inc lude <emscripten/bind.h>
using namespace emscripten;

float lerp(float a, float b, float t) {

return (1 - t) *a + t * b;

}

EMSCRIPTEN_BINDINGS(my_module) {
function("lerp", &lerp);
h




Approach

e auto-generated for all of LibreOffice UNO
* available in the WASM binaries

* but: JS side of that is nasty
- manual lifecycle handling
— clunky lookup
— NO syntactic sugar, no automatic type conversions
- extra-verbose (hyper-verbose at JS-side interfaces)

AL
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LibreOffice WASM
to ZetadS A

* launched late 24

 idiomatic JS
experience

* trivially embed on any
webpage

UNO API exposed to JS

» ~working since early 24

LibreOffice WASM
in the browser

* ~working since end 23

 utilizes embind
» too verbose & lots of boilerplate

* not idiomatic JavaScript, using the C++
» Qt5 for Ul API via JS bindings

e embedded in a canvas
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Approach

* Goals:

— make using LibreOffice a pleasant & streamlined
experience

* Via:
— provide an npm package for 5-mins setup

~ have everything available via CDN — no need to
deploy WASM binaries or mess with CORS
headers

— provide a nice, idiomatic JS wrapper: zetadS
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Approach

e zetadS can:

map the UNO type system nicely into JS
like Integers, strings, sequence, Any objects

UNO Iinterface types & exceptions: mapped to JS

types, throwing possible via
Module. throwUnoException

provides iterators where useful
handles object lifecycles transparently

KX



LibreOffice WASM
to ZetadS A

* launched late 24

* idiomatic JS
experience

* trivially embed on any
webpage

UNO API exposed to JS

» ~working since early 24

LibreOffice WASM
in the browser

* ~working since end 23

 utilizes embind
» too verbose & lots of boilerplate

* not idiomatic JavaScript, using the C++
* Qtd for Ul AP via JS bindings

* embedded in a canvas
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https://zetaoffice.net/demos/web-office/
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fropia

const css = Module.uno.com.sun.star; c C

const desktop = css.frame.Desktop.create( lereOﬁlce WASM
Module.getUnoComponentContext()); ®

let xModel = desktop.getCurrentFrame().getController().getModel();

if (xModel === null || !css.text.XTextDocument.query(xModel))

{

const args = JS UNO .Bindings

new Module.uno_Sequence_com$sun$star$beansSPropertyValue(
©®, Module.uno_Sequence.FromSize);
xModel = css.frame.XComponentlLoader.query(desktop)

. LloadComponentFromURL (
'file:///android/default-document/example.odt', ZetaJS
'_default', 0, args); [
args.delete();

15
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../../../android/default-document/example.odt

fropia

const css = Module.uno.com.sun.star; c C

const desktop = css.frame.Desktop.create( lereOﬁlce WASM
Module.getUnoComponentContext()); ®

let xModel = desktop.getCurrentFrame().getController().getModel();

if (xModel === null || !css.text.XTextDocument.query(xModel))

{

const args = JS UNO .BindingS

new Module.uno_Sequence_com$sun$star$beansSPropertyValue(
©®, Module.uno_Sequence.FromSize);
xModel = css.frame.XComponentlLoader.query(desktop)

. LloadComponentFromURL (
'file:///android/default-document/example.odt', ZetaJS
'_default', 0, args); [
args.delete();

}s
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../../../android/default-document/example.odt

fropia

const css = zetajs.uno.com.sun.star; Libreoﬁ:ice WASM

const desktop = css.frame.Desktop.create(

zetajs.getUnoComponentContext()); ®
let xModel = desktop.getCurrentFrame().getController().getModel();
if (!xModel?.queryInterface(zetajs.type.interface(css.text.XTextDocument)))

{ T
xModel = desktop.loadComponentFromURL ( JS UNO BlndlngS
'file:///android/default-document/example.odt', @-
'_default', 0, [1);
}

ZetadS
®
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Extensibility Scalability & Speed
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Runs client sided in the browser, your data never
leaves your machine.

No server backend required for computing
anything.

Only ~50 MB WASM binary needs serving.
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fropia

Convenience

:

User

* Web browser as the platform
* accessible from any device

* no installation, configuration
ready to go — everywhere

:

Dev.

» w/ zetadS trivially embeddable

« UNO API boilerplate abstracted
away

 CDN at your disposal

(* but obviously you’re not depended on it..)
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Use UNO API

directly from
JavaScript

Customize Ul...
or anything
LibreOffice!

:

Communicate
both ways
WASM - JavaScript

:

Implement
any custom
workflow!
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Scalability & Speed

Serve it with ease

No user count bottleneck. The client computes ;)
No interaction latency
Import/Export files immediately

LITT

45
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Example
Use Cases

Integrate with Line of Business Applications
* order administration

* warehouse software

e accounting / bookkeeping

* document generation & conversion
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Example
Use Cases

Programmable documents Enable
* In-house mapping of processes

* Tons of powerful features

macros, charts, letter templates, ...

spreadsheets, dynamic formatting, ...
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Challenges

Maturity of the platform
* Emscripten
- WASM

* Debugging...

Size of the problem
Link time demands
How much code needs adapting?

Size of the resulting WASM binary
Currently: packed = 35M, optimised
= 150M, debug = 200M + ~1G
separate DWARF info

Size of the filesystem image

~ 100M with all LO fonts, can be
stored locally and split if needed
— can use webfonts?
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Recent
News

Font aliasing issues squashed!
Browser scaling, high DPI support / improvements.

Impress is now supported.

Experimenting with better Ul toolkits

B Future
PEERPT Outlook

Better mobile/touch support

Better responsiveness

52



Give It
A Spin!

See some more live demos
Visit <zetaoffice.net>

Use it in your favorite, front-end framework
Install via ‘'npm i zetajs’

Check the examples
Visit <github.com/allotropia/zetajs/examples>

53


https://zetaoffice.net/
https://github.com/allotropia/zetajs/examples
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