2025-03-23, Chemnitz LinuxTage

How to run LibreOffice

inside your web page
WASM WebWidget & JavaScript

Thorsten Behrens <thorsten.behrens@allotropia.de>

mailto:thorsten.behrens@allotropia.de

] e e Home Insert Layout References Review View Extension Tools
& spelling [A/Auta Spelicheck © Thesaurus & Hyphenation " Word Count coms 1 Compare. 3 Merge.
v — Tt T p— 3 Styles

$AoD=sm@

Contents 1
froma tents 2

Contents 3

wb
Figure 281: Context menu in Formula Editor

Figure

Z Note Frame Contents

The Elements window and the context menu contain only the most common Guide Name
commands that are used in formulas. For some seldom-used commands, you must Heading 1
always enter the command using the markup language. For a complete list of Hesdigz
commands, see the Math Guide.
Heading 3
Markup language Heading Caution
Markup language is entered directly into the Formula Editor. For example, typing the markup iisacinalie
5 times 4 into the Formula Editor creates the simple formula. 54 . If you are experienced in List1
o e - b fommiin Tobis B sbows some e
ke Insert Layout Review Slide Show Vi Extension Tools. ds that can be e
Zila Slab. 135pt v/AA BIU-A %-a-L- ZELE- 2@ Home + New Chapter
' > G 2 7| iSlide Transition x
O N B Page Bresk
— |

Tabe Contents
Uncover Checkers
Text Body

Text

Title

Shape 0% Wedge

Why use free/ljbre and open source software? Venetian

- The four freedoms 8] Show previews

How do | write documents, with styles and bibliography Sovur Hierarchical

management? Engish (UsA) 600750

- LibreOffice Writer

Comb
o |
How do | create spreadsheets, with’ Python support? Ssorai
- LibreOffice Calc

How do | make presentations with* transition: Circles

L] u sounds and animations? [m]
- LibreOffice Impress H Modify Transi
- Lbre®-%X B &K 10pt AA BIU-S O-B-L-
How do 2

" Functions

% | | statistical

v :
DEVSQ
EE

ERFPRECISE

ERFC PRECISE
e 2075 TorEa aragraph &, Row . coumn 1 00 I I EXPON.DIST
- EXPONDIST
- n FoisT
15 3 3 s 6 7 8

i Outons FDISTRT
= inous FINV
FINVRT
ETEST
FDIST
FINV
FISHER
FISHERINV.
FORECAST
FORECAST.ETS.ADD
FORECAST.ETS.MULT
FORECAST.ETS.PIADD
FORECAST.ETS.PLMULT
Stock price predction nvantiner ccsion Ey e FORECAST.ETS.SEASONALITY
FORECAST.ETS.STATADD
FORECAST.ETS.STATMULT
FORECASTLINEAR
GAMMA
GAMMA.DIST

earperiod

WRED mFirance Maketng (AVEDEV:
= Generd WSaes = Oer
Number 1, Number 2,

Financial analysis Retums the average of the absolute deviations of a sai
Default Engiish (USA)

A
| | —

| W 3\)

LibreOffice
Technology

Desktop Platforms Mobile Platforms

Writer Ul
Writer Ul

Cloud Platforms

D LibreOffice

The Document Foundation

o[ssu [su | [weu [ssur [rsur

Desktop Platforms Mobile Platforms

Cloud Platforms

Proprietary and Open Core Office Suites

e LibreOffice in the browser
WA * fully client side — as a Web Assembly binary
* No server, no cloud services are needed
LibreOffice * built with the Emscripten toolchain
WASM * currently using Qt for Ul

@ soffice x| + v - o x

« > C @ lab.allotropia.de/wasm/ < v O % 0O e :

- - : & ¥ o B-Wih E A

X2 Gl A A
—_—

ame Contents t
Frame Content: ; M 2 -

L

L | b O I I .
WASM
He heard quiet steps behind him. That didn't bode well. Who could b

ollowing him this late at night and in this deadbeat part of town? Was
here another crook who'd had the same idea, and was now watching
him and waiting for a chance to grab the fruit of his labor? Or did th
steps behind him mean that one of many law officers in town was on t
him and just waiting to pounce and snap those cuffs on his wrists?

3DShape

%5 allot ropia

fropia O
@) net

First LibreOffice

LibreOffice WASM WASM demo at ~ Headless PDF
pixel on the screen FOSDEM conversion ZetadS Wrapper
Oct 2021 Feb 2022 Feb 2022 Nov 2024
T T T T » Size, speed &
l l l l programmability
improvements
Oct 2020 Oct 2021 Aug 2022 April 2024
Project Kickoff LibreOffice WASM Calc supported UNO API bindings Experimenting with
w/ pixel on the screen for JavaScript frontends & toolkits

NLNet funding

Timeline

Project kickoff:
~ October 2020

Build env & configury & emscripten setup

~ December 2020 — cross-building of a subset works; Docker
builders for Cl available

Get the first LibreOffice-rendered pixel on the screen
~— October 2021 — after a death march of one yeatr...

Get Writer practically working

~ February 2022 — first fully working demo presented at
FOSDE

Timeline

* Get Calc and pdf export practically working:
— August 2022 — got Calc working
— September 2022 — got headless PDF conversion going

* Get Collabora Online port going:
— January 2023 — got first demo working

* Got embind / UNO bindings going
— April 2024 implementation end2end ready
— first experiments & demo

Timeline

 idiomatic JavaScript bindings

April 24 development started
October 24 launched v1.0 npm package
bugfixing, performance & size improvements

March 25 lots of papercuts solved

* clipboard working, Impress support added, font
antialiasing & canvas resizing

10

Timeline

* Ongoing
- bugfixing, performance & size improvements
- further size reductions
— OPFS support (WASM filesystem)
- zetajs cleanups & convenience library

11

Approach

* LibreOffice Is an autotools & GNU make project
— stuck with that, avoid other parallel build systems

- and its already pretty portable, cross-compilation is
supported out of the box

e |ibreOffice has its own GUI abstraction
— with plugins for Gtk, Qt/KF5, WIin32 and OSX

- with Qt5 supporting WASM natively, we went with
that

13

Approach

* LibreOffice is basically c++ (by and large c++17)

— we went with emscripten as platform compiler (pinned to
2.0.31 currently)

* We didn’t want to use any experimental WASM features

— no threading

— no dynamic linking (sadly require a re-tooling of the build
system)

— no native WASM exceptions

* We wanted to focus on Writer initially (and save size by
not building/shipping the rest)

14

Approach

* emscripten & browser tools
— several moving targets
— random setups (emsdk activate / 1install not repeatable)

— In 2020: no source-level debugging, SharedArrayBuffer limitations,
unstable WASM impls

* LibreOffice gbuild make system w/o support for static linking

— GNU make with aton of $(eval.. & $(call .. self-made,
functional build system

— 88 commits, 4kLOC change to add that

* LibreOffice gbuild make system with dependency loops
— UNO component system for dependeny inversion

— once we link statically, we get loops
15

Approach

LibreOffice UNO components
— no static dependencies, but factory & runtime resolution
- switched to static dependency per toplevel application

LibreOffice needs a ton of secondary files (config, fonts, gui descriptions)
- building a virtual embedded filesystem image

Linker problems:
- Link time grew quadratically with symbol amount

at some stage took >1h and >64GB to link
debug build now links in ~30s; not great but manageable

- optimized build still needs huge amounts of memory and time, but saves 25%
binary size with -O2

- always separate debug data, downloadable on demand (DWARF)

16

Browser

JavaScript

Wasm

Approach

17

Browser

JavaScript

Wasm

Approach

18

Browser

JavaScript

Emscripten
POSIX
simulation

Wasm

compiled from
C++ via
Emscripten

Approach

19

Browser

JavaScript

Emscripten
POSIX
simulation

JavaScript

Emscripten
POSIX
simulation

Wasm

compiled from
C++ via
Emscripten

Wasm

compiled from
C++ via
Emscripten

JavaScript

Emscripten
POSIX
simulation

JavaScript

Emscripten
POSIX
simulation

Approach

Wetin

compiled from
C++ via
Emscripten

Wasm

compiled from
C++ via
Emscripten

20

Approach

* Every JS instance in the browser runs off an
event loop:

— onclick, oninput, ...
— async/await, Promises
- postMessage/onmessage

21

Approach

* LibreOffice runs off a main-thread event loop:
— code handling one event
— event loop
- VCL/Qt
— Application::Main
~— main
— browser event loop

22

Approach

* LibreOffice runs off a main-thread event loop:
— code handling one event
— event loop
— VCL/O¢
— Api.c- a0n::Main
- m:
— browser event loop

23

Approach

* turns out developing for WASM was super-hard

~ long link times, huge_ Iinking memory usage, impossible to get
decent turn-around times, ebug%/g\;/m WASM was not efficient -
basically reading disassembled WASM code

- Side-stepped via a native contraption

* turns out classical GUI application & JS event loops are
Incompatible

— side-stepped via threading
- waliting for to land

* be creative & never give up!)

24

https://emscripten.org/docs/porting/asyncify.html

fropia

LibreOffice WASM

to ZetadS

LibreOffice WASM
in the browser

* ~working since end 23
* Qt5 for Ul
* embedded in a canvas

ZetadS

* launched late 24

 idiomatic JS
experience

* trivially embed on any
webpage

UNO API exposed to JS

~working since early "24
utilizes embind
too verbose & lots of boilerplate

not idiomatic JavaScript, using the C++
API via JS bindings o5

Approach

 LibreOffice has a rich (>4000 classes/types)
programmability AP|

— usable via Basic, Python, Java, C++, C##, etc

* needs to be available for a Web application
— requires calling WASM code from JS

- ...which Is super-ugly — function ptrs, parameter
mapping, return value mapping, ...

27

Approach

e emscripten’s embind to the rescue

#inc lude <emscripten/bind.h>
using namespace emscripten;

float lerp(float a, float b, float t) {

return (1 - t) *a + t * b;

}

EMSCRIPTEN_BINDINGS(my_module) {
function("lerp", &lerp);
h

Approach

e auto-generated for all of LibreOffice UNO
* available in the WASM binaries

* but: JS side of that is nasty
- manual lifecycle handling
— clunky lookup
— NO syntactic sugar, no automatic type conversions
- extra-verbose (hyper-verbose at JS-side interfaces)

AL

fropia

LibreOffice WASM
to ZetadS A

* launched late 24

 idiomatic JS
experience

* trivially embed on any
webpage

UNO API exposed to JS

» ~working since early 24

LibreOffice WASM
in the browser

* ~working since end 23

 utilizes embind
» too verbose & lots of boilerplate

* not idiomatic JavaScript, using the C++
» Qt5 for Ul API via JS bindings

e embedded in a canvas

30

Approach

* Goals:

— make using LibreOffice a pleasant & streamlined
experience

* Via:
— provide an npm package for 5-mins setup

~ have everything available via CDN — no need to
deploy WASM binaries or mess with CORS
headers

— provide a nice, idiomatic JS wrapper: zetadS

32

Approach

e zetadS can:

map the UNO type system nicely into JS
like Integers, strings, sequence, Any objects

UNO Iinterface types & exceptions: mapped to JS

types, throwing possible via
Module. throwUnoException

provides iterators where useful
handles object lifecycles transparently

KX

LibreOffice WASM
to ZetadS A

* launched late 24

* idiomatic JS
experience

* trivially embed on any
webpage

UNO API exposed to JS

» ~working since early 24

LibreOffice WASM
in the browser

* ~working since end 23

 utilizes embind
» too verbose & lots of boilerplate

* not idiomatic JavaScript, using the C++
* Qtd for Ul AP via JS bindings

* embedded in a canvas

34

https://zetaoffice.net/demos/web-office/

@ soffice x| + o - o x
« > C & lab.allotropia.de/wasm/ < % O % 0O e

_ LibreOffice WASM
X B & O ‘ - ®

Droid Sans

L

DrawShapes

JS UNO Bindings
®

4

Text in Shape ‘

ZetadS
®

Textframe

He heard quie ps behind him. That didn't bode well. Who could b
ollowing him this late at night and in this deadbeat part of town? Was
here another crook who'd had the same idea, and was now watching
him and waiting for a chance to grab the fruit of his labor? Or did th
steps behind him mean that one of many law officers in town was on t

him and just waiting to pounce and snap those cu

36

fropia

const css = Module.uno.com.sun.star; c C

const desktop = css.frame.Desktop.create(lereOﬁlce WASM
Module.getUnoComponentContext()); ®

let xModel = desktop.getCurrentFrame().getController().getModel();

if (xModel === null || !css.text.XTextDocument.query(xModel))

{

const args = JS UNO .Bindings

new Module.uno_Sequence_comsunstar$beansSPropertyValue(
©®, Module.uno_Sequence.FromSize);
xModel = css.frame.XComponentlLoader.query(desktop)

. LloadComponentFromURL (
'file:///android/default-document/example.odt', ZetaJS
'_default', 0, args); [
args.delete();

15

37

../../../android/default-document/example.odt

fropia

const css = Module.uno.com.sun.star; c C

const desktop = css.frame.Desktop.create(lereOﬁlce WASM
Module.getUnoComponentContext()); ®

let xModel = desktop.getCurrentFrame().getController().getModel();

if (xModel === null || !css.text.XTextDocument.query(xModel))

{

const args = JS UNO .BindingS

new Module.uno_Sequence_comsunstar$beansSPropertyValue(
©®, Module.uno_Sequence.FromSize);
xModel = css.frame.XComponentlLoader.query(desktop)

. LloadComponentFromURL (
'file:///android/default-document/example.odt', ZetaJS
'_default', 0, args); [
args.delete();

}s

38

../../../android/default-document/example.odt

fropia

const css = zetajs.uno.com.sun.star; Libreoﬁ:ice WASM

const desktop = css.frame.Desktop.create(

zetajs.getUnoComponentContext()); ®
let xModel = desktop.getCurrentFrame().getController().getModel();
if (!xModel?.queryInterface(zetajs.type.interface(css.text.XTextDocument)))

{ T
xModel = desktop.loadComponentFromURL (JS UNO BlndlngS
'file:///android/default-document/example.odt', @-
'_default', 0, [1);
}

ZetadS
®

39

../../../android/default-document/example.odt

fropia

Extensibility Scalability & Speed

41

Runs client sided in the browser, your data never
leaves your machine.

No server backend required for computing
anything.

Only ~50 MB WASM binary needs serving.

42

fropia

Convenience

:

User

* Web browser as the platform
* accessible from any device

* no installation, configuration
ready to go — everywhere

:

Dev.

» w/ zetadS trivially embeddable

« UNO API boilerplate abstracted
away

 CDN at your disposal

(* but obviously you’re not depended on it..)

43

Use UNO API

directly from
JavaScript

Customize Ul...
or anything
LibreOffice!

:

Communicate
both ways
WASM - JavaScript

:

Implement
any custom
workflow!

44

Scalability & Speed

Serve it with ease

No user count bottleneck. The client computes ;)
No interaction latency
Import/Export files immediately

LITT

45

&35 allotropia

Example
Use Cases

Integrate with Line of Business Applications
* order administration

* warehouse software

e accounting / bookkeeping

* document generation & conversion

48

Example
Use Cases

Programmable documents Enable
* In-house mapping of processes

* Tons of powerful features

macros, charts, letter templates, ...

spreadsheets, dynamic formatting, ...

49

Challenges

Maturity of the platform
* Emscripten
- WASM

* Debugging...

Size of the problem
Link time demands
How much code needs adapting?

Size of the resulting WASM binary
Currently: packed = 35M, optimised
= 150M, debug = 200M + ~1G
separate DWARF info

Size of the filesystem image

~ 100M with all LO fonts, can be
stored locally and split if needed
— can use webfonts?

91

Recent
News

Font aliasing issues squashed!
Browser scaling, high DPI support / improvements.

Impress is now supported.

Experimenting with better Ul toolkits

B Future
PEERPT Outlook

Better mobile/touch support

Better responsiveness

52

Give It
A Spin!

See some more live demos
Visit <zetaoffice.net>

Use it in your favorite, front-end framework
Install via ‘'npm i zetajs’

Check the examples
Visit <github.com/allotropia/zetajs/examples>

53

https://zetaoffice.net/
https://github.com/allotropia/zetajs/examples

% allot ropia

Questi

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

