ARA ansible-reporting

Wer schon mal mit ansible, ansible-playbook . ansible-console gearbeitet hat kennt die Ausgabe auf der Konsole oder in einem Lodfile.
Tritt ein Fehler auf, wirft Ansible oft einen riesigen JSON-Block aus, der escapte Newlines (\n) enthélt. Das ist meist schwer zu lesen.

Am Ende jedes ansible-playbook Laufs steht der PLAY RECAP .

unreachable > @ Host nicht erreichbar Ist noch relativ einfach zu finden

failed > @ Mindestens ein Task ist fehlgeschlagen. Bei welchen Task. rescued > @ Ein block/rescue hat einen Fehler aufgefangen. Wo und welchen?
Jetzt geht die Suche los!

Entweder in der Console oder im Log.

Das Kann schon eine Herausforderung sein.

ARA ist ein Analyse-, Protokollierungs- und Reporting-System.

Es hat folgende Aufgaben:

e Sammeln (Collect): Die Ergebnisse eines bereits laufenden oder abgeschlossenen Ansible-Runs speichern.
e Archivieren (Archive): Alle Daten in einer durchsuchbaren Datenbank speichern.
o Visualisieren (Visualize): Die Ergebnisse Uber eine Web-Ul darstellen

ARA biete mit Records auch die Mdglichkeit benutzerdefinierte, nicht-technische Metadaten hinzuzufiigen. Somit kann ein Playbook-Lauf einideutig mit der Ursache
verkniipft werden (Ticket-Nummer, Chane Request) oder/und gibst die commit-id der Konffirguration mit an.

ARA biete sich auch ann wenn ansible-pull oder ansible-rulebook verwendet werden, da es eine zentrale Sammelstelle der Ausgaben von ansible-pull
und ansible-rulebook sein kann und sich somit eignet in ARA nach Laufen und Ereignissen zu suchen.

In dem Vortrag wir ARA vorgestellt.

Installation und Erstkonfiguration von ARA

kennenlernen der ARA Webui und der ARA Console

zeigen von ARA Records, Labels

Wie kann ARA bei ansible-pull,ansible-rulebook genutztwerden

Aufbau Vortrag (geplant)

Vortrag: ARA — Ansible Run Analysis
Zielgruppe: Ansible-Administratoren & DevOps Engineers

1. Einleitung & Problemstellung

Der "Schmerz" ohne ARA:

e Uniibersichtliche Konsolenausgaben (stdout).
e Miihsame Suche in Logfiles nach Fehlern in hunderten Tasks.
e Das Problem dezentraler Laufe (ansible-pull).

Was ist ARA?

e Definition: Ein Open-Source "Black-Box-Rekorder" fiir Ansible.
o Die drei Saulen: Collect (Sammeln), Archive (Speichern), Visualize (Anzeigen).

2. Architektur & Funktionsweise

Wie ARA arbeitet:

Ansible Callback Plugin: Klinkt sich in den Prozess ein.
ARA API: Empfangt die Daten.

Datenbank: SQLite (Standard) oder PostgreSQL/MySQL.
Web-Interface: Dashboard zur Auswertung.

Szenarien: Lokal (SQLite) vs. Zentral (API-Server).



3. Installation & Erstkonfiguration

Installation:

e Server-Seite: pip install ara[server] oder via Docker-Container.
e Client-Seite (wo Ansible lauft): pip install ara.

Konfiguration:

e Einbinden des Callback-Plugins
4. Nutzung der WebUI & CLI

e Live-Demo WebUI:
o Dashboard: Ubersicht tiber die letzten Laufe (Erfolgsquote).
o Detailansicht: Drilldown von Playbooks iiber Plays bis hin zu einzelnen Tasks.
o Task-Details: Anzeige von stdout, stderr und dem vollstéandigen JSON-Response.
o Filter-Funktion: Suche nach fehlgeschlagenen Hosts oder spezifischen Modulen.
= Playbook auf Fehler laufen lassen und Fehler finden

ARA CLI:

Abfragen von Statistiken direkt auf dem Terminal.(Anwendungsideen)
5. Profi-Features:

e ara_record.
e ARA Labels

6. Spezial-Szenarien: Pull & Rulebook

Ansible-Pull

Ansible-Rulebook

7. Fazit & Q&A

Zusammenfassung

Offene Fragerunde



	ARA ansible-reporting
	Jetzt geht die Suche los!
	ARA ist ein Analyse-, Protokollierungs- und Reporting-System.
	Es hat folgende Aufgaben:

	In dem Vortrag wir ARA vorgestellt.

	Aufbau Vortrag (geplant)
	Vortrag: ARA – Ansible Run Analysis
	1. Einleitung & Problemstellung
	Der "Schmerz" ohne ARA:
	Was ist ARA?

	2. Architektur & Funktionsweise
	Wie ARA arbeitet:

	3. Installation & Erstkonfiguration
	Installation:
	Konfiguration:

	4. Nutzung der WebUI & CLI
	ARA CLI:
	5. Profi-Features:
	6. Spezial-Szenarien: Pull & Rulebook
	Ansible-Pull
	Ansible-Rulebook

	7. Fazit & Q&A
	Zusammenfassung
	Offene Fragerunde



